

Evaluation Summary

ProMedica February 11, 2013

PTS, Inc. Authors:

Chris Campbell Technical Support Specialist

Michelle Evans
Director of Clinical Affairs

TB000023 Rev. 1

Evaluation Summary

The study conducted at ProMedica consisted of a side-by-side comparative analysis of the CardioChek® PA analyzer using PTS Panels® CHOL+HDL+GLU (Total Cholesterol, HDL Cholesterol, Glucose) test strips (CardioChek PA test system or CCPA) compared with the Beckman DxC 800 (DxC 800) and the Roche Integra (Integra). There were 40 participants in this system evaluation. The results of the individual participants were analyzed using linear regression analysis and bias estimates. These statistical analyses demonstrate the expected statistical equivalence of the CardioChek PA test system and the reference systems. In addition, the individual results from each participant were assessed as to the degree of agreement in the assignment of heart disease risk using Framingham risk classification. Results of this analysis concluded the CardioChek PA test system produced clinically equivalent results to the reference laboratory. These combined analyses demonstrate that the CardioChek PA test system may be employed with confidence in this clinical setting.

At the test site, the blood was collected by two phlebotomists. Two (2) lithium heparin anti-coagulated (green top) tubes were collected per participant. A fingerstick sample, using a 40µl lithium heparinized glass tube, was collected by a Polymer Technology Systems, Inc. (PTS) employee for CCPA FS on 11 participants; however, due to the limited number of samples, these results are not used for comparison in this report. From one green top tube, the PTS technician pipetted 40µl whole blood for testing on CCPA V1 and CCPA V2. Each sample was tested on the CardioChek PA test system within one hour of collection. The first green top tube was centrifuged, the plasma separated, aliquoted, and shipped "next day" to PTS for testing on the Roche Integra. The second tube was centrifuged within two hours, refrigerated, and held until the evening for testing using the Beckman DxC 800.

Results

The following graphs and tables show the detailed analyses of the relationship of the results from the CardioChek PA test system, the Beckman DxC 800, and the Roche Integra.

These analyses indicate that the CardioChek PA test system produces clinically equivalent results when compared to the reference labs. The linear regression data shows a strong correlation between the POCT method and the reference laboratory method for all analytes tested. Further, the risk classification tables indicate that the CardioChek PA test system is clinically equivalent to testing performed within a reference laboratory for all analytes and accurately places a patient within the appropriate health risk category, when compared to that reference method.

Actual paired % differences with the Integra analyzer ((Comparator Result – Integra Lab Result) ÷ Integra Lab Result) are as follows:

CCPA (Averaged)

Total Cholesterol: 0.6%HDL Cholesterol: 1.2%

Glucose: 8.1%

DxC 800

Total Cholesterol: 0.9%HDL Cholesterol: -2.0%

Glucose: 5.4%

Actual paired % differences with the DxC analyzer ((CCPA Result – DxC Lab Result) ÷ DxC Lab Result) are as follows:

CCPA (Averaged)

Total Cholesterol: -0.3%

HDL Cholesterol: 4.0%

Glucose: 2.8%

As shown in the tables below, the calculated average biases (based upon the linear regression analyses) for the venous samples at the clinical decision points versus the Integra analyzer were 1.3% for Total Cholesterol, 4.9% for HDL

Cholesterol, and 8.2% for Glucose on the CCPA. Versus the DxC laboratory analyzer, the Total Cholesterol was 0.6%, HDL Cholesterol was -2.6%, and Glucose was 5.1%.

The calculated average biases (based upon the linear regression analyses) for the CCPA samples at the clinical decision points versus the DxC analyzer were 0.6% for Total Cholesterol, 8.0% for HDL Cholesterol, and 2.6% for Glucose.

Precision analyses were performed by testing 10 replicates of three samples using PTS Panels® CHOL+HDL+GLU test strips.

Statistical Analysis Summary

The summary of the linear regression and predicted bias data is shown below. The regression statistics are displayed for each individual instrument used. These data are then used to calculate the predicted biases for each analyte at specific clinical decision values. Note that the predicted biases can only be determined if there are sufficient data in the relevant range. In the tables below, those ranges that have insufficient data to allow a valid calculation are noted.

Total Cholesterol				
vs Integra	DxC 800	CCPA V1	CCPA V2	
N	40	40	39	
slope	1.0	1.1	1.1	
intercept	5.3	-11.8	-15.1	
R	0.993	0.936	0.932	
vs DxC		CCPA V1	CCPA V2	
slope		1.1	1.1	
intercept		-18.0	-20.5	
R		0.944	0.929	

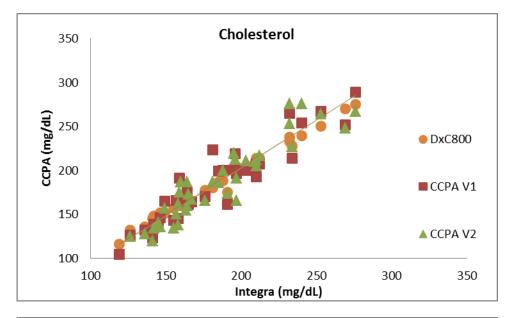
Total Cholesterol Predicted Biases						
Integra	DxC 800	% bias	CCPA V1	% bias	CCPA V2	% bias
160	162	1.2%	160	0.2%	159	-0.5%
200	201	0.5%	203	1.5%	203	1.5%
240	240	0.1%	246	2.5%	246	2.5%
280	Data Insufficient to Evaluate					
	Average bias	0.6%		1.4%		1.2%

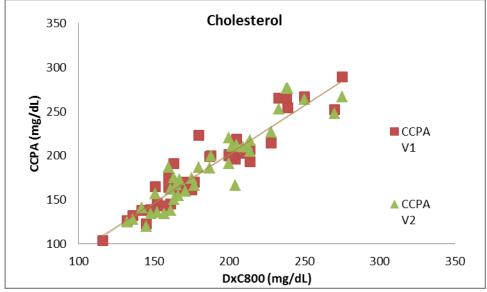
Total Cholesterol Predicted Biases				
DxC 800	CCPA V1	% bias	CCPA V2	% bias
160	158	-1.1%	157	-1.9%
200	202	1.1%	201	0.7%
240	246	2.5%	246	2.5%
280	Data Insufficient to Evaluate			
	Average bias	0.8%		0.4%

HDL Cholesterol				
vs Integra	DxC 800	CCPA V1	CCPA V2	
N	40	38	39	
slope	1.0	1.0	1.1	
intercept	-0.8	0.4	-0.2	
R	0.979	0.930	0.952	
vs DxC		CCPA V1	CCPA V2	
slope		1.1	1.1	
intercept		0.8	-1.2	
R		0.903	0.934	

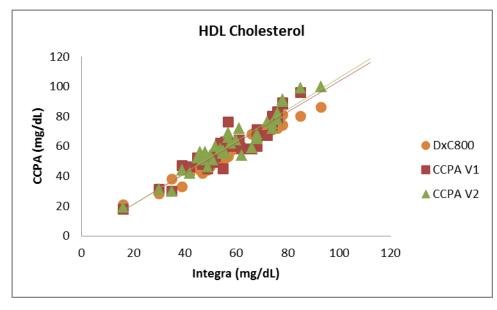
HDL Cholesterol Predicted Biases						
Integra	DxC 800	% bias	CCPA V1	% bias	CCPA V2	% bias
40	39	-3.1%	42	5.0%	42	5.0%
60	59	-2.5%	62	4.1%	63	5.7%
80	78	-2.1%	83	3.9%	85	5.8%
100	Data Insufficient to Evaluate					
	Average bias	-2.6%		4.3%		5.5%

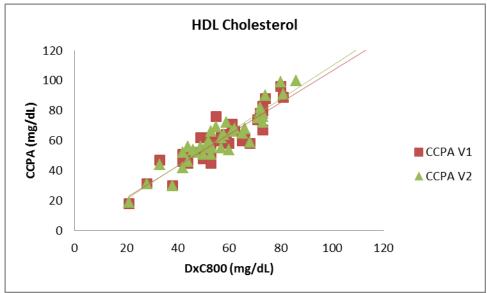
HDL Cholesterol Predicted Biases				
DxC800	CCPA V1	% bias	CCPA V2	% bias
40	43	7.50%	43	7.50%
60	64	7.04%	65	9.17%
80	85	6.72%	88	9.68%
100	Data Insufficient to Evaluate			
	Average bias	7.1%		8.8%

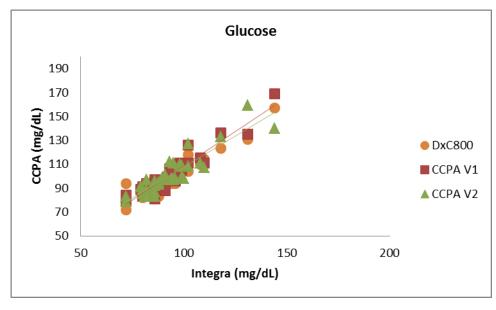

	Glucose				
vs Integra	DxC 800	CCPA V1	CCPA V2		
N	40	40	40		
slope	1.0	1.1	1.0		
intercept	3.0	-6.2	3.7		
R	0.945	0.945	0.906		
vs DxC		CCPA V1	CCPA V2		
slope		1.1	0.9		
intercept		-3.0	9.3		
В		0 941	0.876		

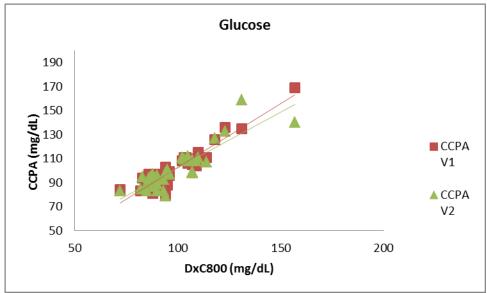

Glucose Predicted Biases						
Integra	DxC 800	% bias	CCPA V1	% bias	CCPA V2	% bias
100	105	5.1%	109	8.8%	108	7.6%
150						
200			Data Insufficient t	to Evaluate		
250						
	Average bias	5.1%		8.8%		7.6%

Glucose Predicted Biases				
DxC 800	CCPA V1	% bias	CCPA V2	% bias
100	103	2.9%	102	2.2%
150				
200		Data Insufficie	ent to Evaluate	
250				
	Average bias	2.9%		2.2%


Linear Regression Analyses




Linear Regression Analyses, Continued



Linear Regression Analyses, Continued

Precision Analyses

	High		
	CHOL	HDL	GLU
1	207	76	100
2	199	64	116
3	179	64	102
4	203	80	99
5	187	72	111
6	209	67	106
7	203	68	103
5	212	73	98
9	209	81	90
10	198	64	112
n	10	10	10
Average:	200.6	70.9	103.7
SD	10.5	6.5	7.7
CV (%)	5.2	9.2	7.5

	Mid			
CHOL	HDL	GLU		
263	48	132		
273	48	127		
237	43	132		
270	45	134		
262	42	132		
238	47	132		
236	49	144		
263	45	123		
262	46	121		
256	45	122		
10	10	10		
256.0	45.8	129.9		
13.9	2.3	6.9		
5.4	4.9	5.3		

Low			
CHOL	HDL	GLU	
109	22	97	
111	22	100	
110	19	101	
113	20	106	
109	20	104	
103	20	105	
118	17	108	
104	18	108	
119	19	96	
110	20	95	
10	10	10	
110.6	19.7	102.0	
5.2	1.6	4.9	
4.7	8.0	4.8	

	CHOL	HDL	GLU
Average %CV	5.1%	7.4%	5.9%

Serial Number: 30203380

Risk Classification

Each result was categorized based on Framingham risk categories for each of the analytes (top table below). From these analyses, a clinical agreement table was compiled (bottom table below) applying strict limits to quantify "Agreement." This means that a sample yielding Total Cholesterol results of 199 and 200 mg/dL on the two test systems was rated as a one category difference despite the clinical insignificance of the discrepancy. These results are shown as the number of values where there is clinical agreement (Agree), a one category difference (1 Cat Diff), or a two category difference (2 Cat Diff) between the comparator and the reference laboratory result.

Risk Classification								
Categories Compared	Total Cholesterol (mg/dL)				HDL Cholesterol (mg/dL)		Glucose (mg/dL)	
Ranges	<200	200 - 240	>240	<40	≥40	<126	<u>></u> 126	

Risk Classification Agreement Between Methods and Integra								
	Total Cholesterol HDL Cholesterol Glucose						cose	
	Agree	1 Cat Diff	2 Cat Diff	Agree 1 Cat Diff		Agree	1 Cat Diff	
DxC 800	35	5	0	40	0	40	0	
CCPA V1	32	8	0	39	1	38	2	
CCPA V2	35	5	0	39	1	38	2	

Risk Classification Agreement Between Methods DxC									
	Total Cholesterol HDL Cholesterol Glucose								
	Agree	1 Cat Diff	2 Cat Diff	Agree	1 Cat Diff	Agree	1 Cat Diff		
CCPA V1	33	7	0	39	1	38	2		
CCPA V2	34	6	0	39	1	38	2		

Raw Data Tables

CHOLESTEROL

r	CHOLLSTEROL						
Sample #	DxC 800	Integra	CCPA V1	CCPA V2	CCPA fingerstick		
1	161	158	145	162			
2	166	163	164	155			
3	151	149	165	157			
4	204	197	196	166			
5	200	195	201	220			
6	233	232	265	253			
7	167	165	161	173			
8	161	158	145	138			
9	142	145	138	141			
10	177	176	170	166			
11	132	126	126	125			
12	180	181	223	187			
13	175	191	161	174			
14	160	160	164	187	179		
15	202	203	200	211			
16	250	253	267	264	263		
17	275	276	289	267	294		
18	152	146	146	136			
19	116	119	104	<100			
20	214	212	207	217	251		
21	171	164	170	160	188		
22	148	142	139	134			
23	270	269	252	248			
24	214	210	193	205	227		
25	157	155	143	134			
26	145	141	123	120			
27	136	136	132	128			
28	205	196	219	212	236		
29	239	240	254	276			
30	212	210	207	212			
31	238	232	266	276			
32	228	234	214	227			
33	200	197	200	191	231		
34	188	188	200	200	206		
35	160	164	175	187			
36	187	185	199	186			
37	163	159	191	175			
38	165	167	164	167			
39	209	209	203	210	211		
40	163	157	166	150	179		

Raw Data Tables

HDL CHOLESTEROL

Sample #	DxC 800	Integra	CCPA V1	CCPA V2	CCPA fingerstick
1	65	68	60	65	
2	66	68	62	68	
3	58	60	62	64	
4	42	47	51	52	
5	59	61	64	72	
6	33	39	47	44	
7	73	74	80	72	
8	61	68	71	66	
9	53	57	60	66	
10	47	45	52	52	
11	73	76	83	78	
12	80	85	96	99	
13	73	72	67	76	
14	49	55	62	56	65
15	52	54	62	58	
16	86	93	<mark>>100</mark>	100	<mark>>100</mark>
17	46	50	52	54	47
18	62	68	66	68	
19	21	16	18	19	
20	74	78	88	90	82
21	44	46	51	56	48
22	28	30	31	31	
23	53	55	58	55	
24	72	76	78	82	83
25	60	62	58	54	
26	44	49	45	46	
27	38	35	30	30	
28	122	112	<mark>>100</mark>	>100	<mark>>100</mark>
29	50	47	48	51	
30	57	58	60	62	
31	81	78	89	91	
32	53	51	49	51	
33	53	55	45	57	54
34	51	48	52	56	54
35	57	56	63	55	
36	52	52	53	60	
37	55	57	76	69	
38	42	42	46	42	
39	71	74	74	75	71
40	68	66	58	59	58

Raw Data Tables

GLUCOSE

Sample #	DxC 800	Integra	CCPA V1	CCPA V2	CCPA fingerstick
1	94	72	80	79	
2	86	79	89	91	
3	90	86	96	96	
4	104	102	111	108	
5	103	98	111	110	
6	118	102	126	127	
7	86	86	97	94	
8	107	99	105	99	
9	107	100	108	98	
10	107	99	110	109	
11	95	91	88	101	
12	93	86	87	83	
13	90	81	84	83	
14	123	118	136	133	121
15	102	95	108	111	
16	87	80	91	89	85
17	109	98	104	108	96
18	88	86	93	92	
19	105	93	106	112	
20	72	72	84	83	112
21	88	82	94	97	116
22	157	144	169	140	
23	96	89	96	97	
24	110	108	115	111	138
25	82	80	83	85	
26	87	86	91	92	
27	84	84	88	86	
28	131	131	135	159	144
29	89	86	97	94	
30	96	95	98	97	
31	83	88	94	95	
32	94	96	96	98	
33	88	86	81	87	85
34	96	92	99	97	103
35	85	82	83	83	
36	90	82	91	89	
37	93	88	94	93	
38	114	110	111	107	
39	87	86	90	95	97
40	94	94	103	98	114

Overview of Evaluation and Analyses

Evaluation Site

ProMedica Inc., Toledo, OH

Third Party Comparisons (X-axis)

Roche Integra Specimen: Plasma Beckman DxC 800: Plasma

Reagents Used

PTS Panels® CHOL+HDL+GLU Test Strips - Lot: I301

POCT Evaluation Instruments (Y-axis)

CardioChek Devices:

3 CardioChek[®] PA analyzers, Version 2.62 Serial #s 3020525, 3020477, 3020380 Specimen: Heparinized venous whole blood

Data Analyses Performed

All analyses are completed by creating a 2-way table for each analyte, then generating the correlation statistics for the comparison of the results. These data can then be evaluated graphically and for clinical interpretation.

Regression Statistics Summary

Statistical Definitions

Slope: The slope of a line in the plane containing the x- and y-axes is generally represented by the letter m, and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line. (A perfect slope is "1")

Intercept: Where a straight line crosses the Y-axis of a graph. (A perfect intercept is "0")

R Value: A statistic that gives a measure of how closely two variables are related, also known as the correlation coefficient. It represents the extent to which variations in one variable are related to variations in another or "goodness of fit."

Comparison Key Aspects

Any method comparison must be approached with a clear understanding of variables that affect the test results. The known variation of chemistry analytical systems must always be considered when evaluating observed bias. Such variation is not only evident between POCT and laboratory systems, but also between laboratory systems. Even in the most closely aligned systems, two methods may "correlate" but rarely "match." Identity is not a prerequisite for acceptance, but rather an understanding of the bias at clinical decision limits for the analyte in question and the clinical consequences of these biases. The critical evaluation criterion is the placement of a given patient into appropriate risk categories by each system. In these analyses, a point by point comparison was made for each patient evaluating the risk classification category for each result.